Machine Learning Predictions of Postoperative
Outcomes in Adult Male Circumcision

Leonid Shpaner, M.S., Giuseppe Saitta, M.D.

CircumScore App

Patient Outcome Profiler

Slideshow Presentation

From Conceptualization to Modeling

Circumcision Techniques in Milan

A Comparative Modeling Dashboard

Description of image

Scatter Plots of Continuous Predictor Variables

Relationships of All Possible Non-Binary Independent Variable Relationships

.

Exploratory Data Analysis Notebook


Code Notebook: Modeling and Evaluation


Description of image

3D Support Vector Machine Decision Boundary

Intraoperative Blood Loss (ml) vs. Surgical Technique

Description of image

Data Table Supplement

Supplementary Data Tables

Description of image

Supplementary Slides

Exploratory Data Analysis (A-Z)

References

  1. Leonardi R, Saitta G. Laser Circumcision in Adult Males: A Modern Approach for Improved Outcomes. In: Surgical Advances in Urology. IntechOpen; 2022. https://doi.org/10.5772/intechopen.106084
  2. Lundberg SM, Lee S-I. (2017). A unified approach to interpreting model predictions. NeurIPS, 30: 4765–4774. PDF
  3. Demas CP, Khan S, Mandava SH, et al. The effect of diabetes on postoperative outcomes following male urethral sling placement. Can Urol Assoc J. 2016;10(7–8):E251–E254. https://doi.org/10.5489/cuaj.3613
  4. Talini C, Antunes LA, de Carvalho BCN, et al. Circumcision: postoperative complications that required reoperation. Einstein (São Paulo). 2018;16(3):eAO4241. https://doi.org/10.1590/S1679-45082018AO4241
  5. Van Calster B, McLernon DJ, van Smeden M, et al. Calibration: The Achilles heel of predictive analytics. BMC Med. 2019;17:230. https://doi.org/10.1186/s12916-019-1466-7
  6. Funnell A, Shpaner L, Petousis P. Model Tuner (v0.0.31b) [Software]. Zenodo. https://doi.org/10.5281/zenodo.12727322
  7. Shpaner L, Gil O. EDA Toolkit (v0.0.16) [Software]. Zenodo. https://doi.org/10.5281/zenodo.13162633
  8. Shpaner L. Model Metrics (v0.0.3a) [Software]. Zenodo. https://doi.org/10.5281/zenodo.14879819
  9. Harris CR, Millman KJ, van der Walt SJ, et al. Array programming with NumPy. Nature. 2020;585(7825):357–362. https://doi.org/10.1038/s41586-020-2649-2
  10. Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research . 2011;12:2825–2830. https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html