pack <- function(lib){
new.lib <- lib[!(lib %in%
installed.packages()[, 'Package'])]
if (length(new.lib))
install.packages(new.lib, dependencies = TRUE)
sapply(lib, require, character.only = TRUE)
}
packages <- c('neuralnet', 'corrplot', 'caret', 'caTools', 'ggplot2', 'ggpubr',
'cowplot', 'h2o', 'lime', 'pander', 'DT')
pack(packages)
## neuralnet corrplot caret caTools ggplot2 ggpubr cowplot h2o
## TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
## lime pander DT
## TRUE TRUE TRUE
getwd() # establish current working directory
[1] “C:/Users/lshpaner/OneDrive/Cornell University/Coursework/Data Science Certificate Program/CEEM586 - Neural Networks and Machine Learning”
# set new working directory
working_dir = paste('C:/Users/lshpaner/OneDrive/Cornell University/Coursework/',
'Data Science Certificate Program/',
'CEEM586 - Neural Networks and Machine Learning/', sep = '')
setwd(working_dir)
# Read in the data
election <- read.csv(paste('https://raw.githubusercontent.com/lshpaner/',
'CEEM586_Neural_Networks_and_ML/main/data/',
'ElectionData.csv', sep = ''), row.names = 1,
header = TRUE,
stringsAsFactors = FALSE)
# remove index column to better adapt to machine learning format
rownames(election) <- NULL
datatable(election, options = list(scrollX = TRUE)) # inspect the df